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2 Computer Simulation

Abstract

The use of computer simulation as a technique for building formal models of mental processes

forces the cognitivs psychologist to consider the content of knowledge, In particular strategic or

heuristic knowledge. The rationale and workmode of simulation research are summarized. A

short review illustrates the range of phenomena with educational relevance to which the

simulation technique has been applied. Computer simulation and education are predicted to

interact in several ways in the future, most directly through computerized teaching tools like

intelligent tutoring systems and systems for automatic cognitive diagnosis,
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3 Computer Simulation

In the practical business of giving explanationsafter allscientists
often enough rely not on the presentation of deductive

arguments, but on such alternative activities as the drawing of graphs
or ray-diagrams, the construction of intellectual models, or the

programming of computers.... rhel primary thing to be learned, tested,
put to work, criticized, and changed PsJ the repertory of

intellectual techniques, procedures, skills, and methods of
representation, which are employed in 'giving explanations' of events

and phenomena within the scope of the science concerned.

Stephen Toulmln, Human Understanding, pp. 157-159.

Teachers, I am sure, strive to teach according to how learners learn. Their ambition is

hampered, however, by our lack of knowledge about the psychology of learniEg. In the past,

pedagogical applications have been derived from such disparate ideas as the behaviorist concept

of reinforcement (Glaser, 1978) and the plagetian notlou of stages of intellectual growth (Groen,

1978), but they have been largely unsuccessfull. The art of teaching has been unable to turn

Itself Into the engineering of Instruction, for lack of a viable science of learning.

In the last three decades, the Information processing perspective has become the dominant

point of view in the study of thinking, reasoning, problem solving, memory, learning, attention,

perception, and other knowledge-related mental processed and functions (see, e.g., Anderson, 1980;

Gardner, 1985). The central notion of this new psychology of cognition Is that knowledge resides

In symbol structures In the head, and that mental processes consist of using, editing, or creating

those symbol structures. The main goals of this essay are to summarize the theory and practice

of computer simulation, to assess the state of the art of simulation with respect to pedagogically

relevant processes like learning, and to speculate about the impact of such simulations on

pedagogical research and practice.

Even though the psychology of mental symbol manipulations is a young creature, It now has

1See Good & Brophy (1088) for an up to date introduction to educational psychology.
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offspring. One group of cognitive psychologists is already changing the way we think about

computer simulation by basing simulations on what we know about how the brain works, as well

as on analyses of knowledge. This research orientation - often labeled "connectionism" - uses the

research i,00l of computer simulation within a new theoretical framework, producing simulations

of a novel sort (McClelland, Rumelhart, & the PDP research group, In press a,b). This Is an

interesting gnd important development. The focus of this essay is nevertheless on what we now

must call traditional computer simulations, whfie connectionist simulations will be discussed only

briefly. The main reason for this bias is that the application of connectionist research to

education Is, by and large, yet to come, while computer simulationists in general have payed

considerable attention to classroom tasks in recent years.

The purpose of the first section below is to remind the reader of some well-known but useful

philosophical concepts, such as the Idea of formalization of theories, the distinction between

theories and models, and the notion of a research programme. The second and main section

explains, reviews, and critiques the computer simulation programme, concluding that there are

difficulties with it, some - but only some - of which could be overcome If researchers took the

programme seriously. In a short section on the new programme of connectionism I describe its

methodological advantages and express my concern about the way in which knowledge appears

(or, rather, does not appear) within connectionist theories. I then turn to the question of what the

pedagogical consequences of the computer simulation technique might be, reaching the conclusion

that although simulation lends itself to pedagogical purposes, the impact of simulation research

on educational practice will be slight. Instead, computer simulation makes it possible for

educational practice to set the agenda for cognitive research.

On Theories and Theorizing

Theorizing is a complex activity, and theories have many aspects; let us illustrate them with

a handful of metaphors. A scientiftc theory represents an effort at understanding. Its purpose is to

7



5 Computer 31mulation

enable clear, coherent, and successful thinking about some part or aspect of the world. A theory

is thus like a weave of ideas, its strength a function of how tight the strands are woven together.

Penetrating behind the observable surface of the world, a theory postulates - creates, invents -

objects, processes, interactions, etc., such that If they were real, the surface characteristics of the

world would have to be just the way we observe them to be. A theory is thus like a fantasy or a

dayc sttm, albeit a very disciplined and purposeful one. If the world was described In a long and

detailed text, a theory would be a statement of the main ideas, the themes which underly the text

as a whole. A theory is thus like an abstract. Once proposed, a successful theory is typically

applied again and again to one phenomenon after another. If it continues to bring clarity and

understanding, more and more phenomena will be seen as belonging to its domain. A theory is

thus like a politically ambitious emperor, reaching out to conquer a larger and larger territory.

The effort to extend a theory leads to the clarification of concepts, the sharpening of distinctions,

and the exploration of alternative formulations and formalitations. A theory Is thus like a crystal,

steadily growing into its perfect form.

Since theories deal with entities which cannot be observed directly, theoreticians have a

unique problem In communicating with each otheT: They must dispense with what philosophers

call "ostensive definitions", I. e., they cannot point to instances of what they are talking about;

they cannot explain what they mean by showing examples. Since the sensory content of scientific

terms is thus minimized, the rules by which those terms are combined becomes so much more

important. Scientific discourse takes on the character of a language game, the central terms

becoming mere tokens fitted into standardized patterns of expression.

It is not only hard to communicate about unobservables, it Is also hard to think about

them. Ordinarily, we think within the context of the common sense knowledge about our world

that we have collected by being participants In it. But none of US have gamboled with electrons

and quarks as children, conversed at length with double helixes, or spent Sunday afternoons
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observing patterns of activations spread across semantic networks. Reasoning about such entities

has to proceed without the safety net of common sense.

P3th of these factors - the absence of concrete instances of theoretical terms and the

consequent lack of common sense knowledge about them - creates a strong tendency to formalize

the scientiric language game, to express the statements of a theory In a mathematical or logical

calculus, so that the user of the theory need not rely on his intuitive understanding of its terms

(Tarski, 1955). The rules of the calculus determine how the terms are to be used within the

theory. Theoreticians can then focus their attention on the rules. The rules can, of course, be

written down and so form concrete targets for agreements and disagreements. They can be

discussed and constructively analyzed and Investigated without universal agreement about exactly

what intuitive content should be assigned to the terms they govern. Formalization also facilitates

thinking. Mathematics, for instance, can be seen as a huge set of abstract Inference-patterns

which have been thoroughly Investigated and found to be valid. Expressing a scientific theory in

mathematical symbols allows the scientist to draw upon and appiy those inference patterns while

reason about his subject matter. A formal calculus supports thinking where common sense is

powerless. In short, although formalization makes a subject matter Incomprehensible to anyone

who has no mastery of the particular formalism used, it nevertheless facilitates communication

and collaborative thinking among the scientists who work with the theory.

Scientific theories, like ice-cream, come in different flavours. Throughout the diverse fields

of scientifir activity, different modes of knowing are employed, as they best fit the subject matter

at hand (Toulmin, 1972). In some fields, It Is common to build a model of the system being

studied. If we are studying a system S, then a model of S Is some other system M which is like S

in some way. The question of exactly how M should be "like" S to be a good model is a question

of some complexity (Hesse, 1970; Shanin, 1972). A model M is not merely "similar" to the system

S. If this were the case, it would be unclear how the model could be useful in invealgating

,-) 9



7 Computer Simulation

S. What could we discover by studying M other than the very similarity between M and S which

made us select M as a model of S in the first place? The answer Is that a good model has to be a

generative system, L e., a system which produces behavior, results, products, etc., of some sort.

By investigating ht...v the model M works - what results it generates; under different

circumstances, how its parts and properties interact - and by hypothesizing that the system S

works in the same way, we can improve our understanding of S.

The term "theory" is used in both a narrow and a wide sense. In the narrow sense, a theory

consists of a collection of "laws" - principles, statements, assertions - and, possibly, proofs c':

theorems, all of which have logical relationships to each other. A theory In this sense is basically a

description, a text, even when expressed in some esoteric symbolism. A theory in the narrow sense

contrasts with a model. A model is more like a replica; it represents the system of interest by

duplicating its essential structure. It cons5its of components which have functional relationships to

each other. A model Is basically a picture, even when drawn In some non-visual medium like a

programming language.

In the wider sense, a theory consists of both a set of principles and a model. The traditional

astronomical theory of the solar system is an example. On the one hand, there is a system of

equations which describes how the heavenly bodies act on each other and from which one can

derive descriptions of how they move. This is a theory In the narrow sense. On the other hand,

there is a geometric model of the solar system, consisting of spheres travelling along ellipses. The

set of laws and the model together make up the astronomical theory In the wide sense. I will rely

on context to make clear whether the term "theory" is used in the narrow or in the wide sense.

Only rarely does a scientific theory spring fully developed from its creator's head. More

typically, a core idea is born, Judged promising, and then worked out In an example. If the

example Is convincing, various developments follow. As the idea - fledging theory, 83 It were - is
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applied to new situations, other, auxiliary ideas are combined with it, already established theories

are compared to it, alternative formulations of tc. appear, efforts are undertaken to generalize it,

etc.

In popular accounts of science, the creation of new theories Is often portrayed as the main

activity in research. In philosophical discussions, empirical testing of theories tends to occupy

center stage. But the bulk of a scientist's time is spent neither in inventing theories nor In testing

them, but in applying them. A theory is a complicated, abstrz.zt description. It Is often far from

self-evident how it should be used in order to construct an explanation for a particular fact or

event. For Instance, It took physicists more than two centuries to work out the many applications

of Newton's theory of gravitation.

The activity of developing and applying a theory is very complex, both intellectually and

sociologically (Toulmin, 1972). It Is regulated by a paradigm (Kuhn, 1970) or a research

programme (Lakatos, 1978), an "ideology" or point of view, loosely defined, which is more or less

shared among those who work with the theory. A research programme consists of beliefs about a

theory - a rationale for why the theory is interesting - and canons and conventions for working

with that theory. It answers questions like the following: What is the core idea in the theory and

which are the auxiliary ideas? What kinds of phenomena, and what kinds of observations of those

phenomena, does the theory address? What kind of explanation does the theory provide? What

counts as having explained something? When is an explanation successful? How can the theory be

extended or improved? What form does progress take? What is the ultimate goal of the

programme* What would count as "complete success"? Different programmes provide different

answers to such questions for a particular field of research. In this essay, I am treating computer

simulation as a research programme in the sense of Lakatos.
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T'le Computer Simulation Programme

As noted in the introduction, computer simulation models are currently used by two

different, although related, research programmes within cognitive psychology. The older

programme conceptualises cognitive processes as operations on symbol structures and builds

simulations based on what we know about knowledge, while the more recent connectionist

programme builds simulations based on what we know about the brain. The connectionist

programme is reviewed in a separate section.

Psychologists sometimes use the 'erm "simulation" to refer to computer programs which

are not intended as theoretical models, In some experimental studies, subjects are observed while

interacting with a simulation, e. g., a simulation of some complicsted piece of machinery. In this

case, the simulation is a model of the environment; it is a stimulus, or a technique for presenting

a complicated stimulus. Also, some psychological theories are expressed in mathematical equations

which are so complicated that they cannot be solved with the help of algebraic manipulations. In

such cases, a computer program can be used to crunch out numerical solutions to those equations;

such a program is often called a simulation2. In this essay, I will not discuss either of these two

types of simulations.

The present section is divided into four parts: a statement of the rationale of the simulation

programme, a summary of the workmode implied by that rationale, a select - and educationally

biased - review of research inspired by it, and, finally, a critique.

The rationale

The core conception behind the use of computer programs as models of human cognitive

processes consists of three main ideas. The first idea is that knowledge-relevant processes such as

perception, remembering, and thinking operate upon internal symbastructures, I. e., sense-

2,
Loftus (1085) for critical comments on some uses of ibis kind of simulatioa.
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Impressions, memories, concepts, thoughts, ideas, Images, etc., which symbolize or represent the

external world. This stance - so self-evident to common sense as to be almost invisible for lack of

contrasting alternatives - was rejected by behaviorbt psychology, but was re-asserted throughout

psychology and related dbciplines during the fifties and early sixties. The notion that internal

representations constitute the grist for the mental mill lies at the heart of modern cognitive

psychology.

The second intellectual cornerstone of computer simulation is more technical and its

historical origin more circumscribed. It is the Insight that a computer has no intrinsic relation to

numbers. The binary digits "1" and "0" which featured so prominently in early popularizations

of computers can equally well be interpreted as standing for "true" and "false", or even "tip"

and "down", as for the numbers one and zero. Furthermore, groups of binary digits can be used

as a code for any other symbol one might care to use, such as, say, the word "table", the

implication-sign of formal logic, or the chemical symbol for oxygen..The computer is a general

machine for operating upon symbols, any symbols. This conclusion appeared among a small

number of individuals during the fifties (Sohn McCarthy, Marvin Minsky, Allen Newell, Herbert

Simon, among others). Their names are well-known to us because their insight made research into

Artificial Intelligence (A. I.) possible.

The third and final step in the path to computer simulation as a psychological technique

was taken by a team of three Individuals and was first published in a joint paper entitled

"Elements of a theory of human problem solving" (Newell, Shaw, & Simon, 1958). The paper

combines the two previously described ideas: If human cognition operates on internal

representations, and if computers can manipulate arbitrary symbol-structures, then computer

programs are candidate models of thought processes.3

3
The reader might want to eompare the brief account given here with the more extensive discussion in the historical

addendum in Newell & Simon (1072, pp. 873-884 and with Gardner (1035).

13



11 Computer Simulation

We should notice and dismiss two common misconceptions. First, a computer model is not a

model of the brain, but a model of the mind (or the cognitive aspect of mind). Computer

simulation models are not interpreted in physiological terms like "brain cells", "electric

potentials", etc., but in psychological terms like "knowledge", "attention", "meMories",

"thoughts", "beliefs", "concepts", "Intentions", "Inferences", "Insights", "skills", etc.4 Second,

the organization of a general-purpose digital computer Is determined by very different

considerations than that of modelling the human mind. Consequently, the model does not reside

In the physical machine, but In the program. In short, the claim of the simulation programme is

not that computers are like brains, but that the process of executing a stored program shares

something essential with the process of thinking.

To clarify what that shared essence Is, we must take a brief look at the nature of computer

programs. Programming languages are not assertive or descriptive but ezhortational languages.

They are designed to facilitate clear and unambiguous statement of procedures. A program is

constructed by combining simple instructions into more complex ones, according to the rules of

the particular programming language. Each instruction exhorts the machine to manipulate some

symbol-structure in some way, e. g., moving it, changing it, deleting it, etc. Complex instructions

are then combined into even more complex instructions, etc. A computer program is thus like a

recipe, describing the procedure for, say, making apple pie, or a repair manual for an automobile,

except that the objects being manipulated are symbols rather than apples or engines. From the

psychological point of view, programs are like cognitive strategies: problem solving strategies,

attentional strategies, rehearsal strategies, memorization strategies, retrieval strategies, etc., of

which modern cognitive psychology is full. If we have a (sufficiently specific) hypothesis about

what strategy a person is applying to some cognitive task, we can specify that strategy In a

programming language. Since the computer can read and execute such a specification (as long as

4
One feature of the new connectionist programme is that its practitioners do try to discuss their models in physiological

terms.
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the conventions of the particular programming language have been followed precisely), loading

the program into the machine enables the machine to apply that strategy. Program execution and

thinking are similar in that both processes consist in the application of a strategy to a task

(Simon, 1981).

A number of consequences follow from this basic conception. For instance, if a computer

and a person are applying the same strategy to the same task, they should succeed and fall on the

same problems. They should go through the same intermediate stages or produce the same partial

results. They should make similar errors under similar circumstances. They should find the same

problems easy or difficult, respectively. These expectations form the basis for the empirical

evaluation of simulation models, a topic which will be discussed further below.

The simulation idea generates in-principle or generic answers to the basic questions of

cognitive psychology. Every theoretical programme in psychology, I claim, has to have in-

principle answers to the following four basic questions: Why is one task more or less difficult than

z...::!other (for a given individual)? Why Is one and the same problem easy for one individual and

difficult for another? What is the nature of cognitive change? What aspects of cognition are

invariant across tasks, across individuals, and over time? The generic answers provided by the

computer simulation programme can be summs.rized as follows:

1. Inter-Item differences. The generic explanation for task difficulty provided by the
simulation programme is that one task requires more computations than the other.
The amount of computation needed Is, in turn, a function of a number of factors, such
as the structure of the mental representation of the task and the need to avoid short-
term memory load (see, e. g., Kotovsky, Hayes, & Simon, 1985).

2. Inter-individual differences. According to the simulationIst's view, if two individuals
perform differently on a task, then they are applying different methods to that task.
The method can be analyzed into the representation of the task, the cognitive
operations applied to it, and the strategy which controls the application of those
operations, any of which may be responsible for a particular difference (see, e.g., Just
& Carpenter, 1985; Newell & Simon, 1972; Ohisson, 1984a).

3. Change. According to the simulation programme, cognitive change is the same as

15
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revision of the knowledge-base in the head. Improvement in skills comes about
through processes, so-called learning mechanisms, which revise - re-program, as it were
- cognitive strategies (see Anderson, 1981a, and Kiahr, Langley, & Neches, in press, Mr
collections of articles about the simulation of skill learning). Improvement in
declarative knowledge comes about through storage processes which extend the data-
base in long-term memory. Forgetting is conceptualized as either decay of stored
information or as interference between several pieces of information at the time of
retrieval (see, e. g., Kolodner, 1984).

4. Generality. According to the computer simulation programme, it is the "mental
programming language", or, more precisely, the structure of the information
processing system in the head which remains invariant across individuals, across tasks,
and over time (Newell, 1972; 1973a; 1973b).

Current research in cognitive psychology consists, to a large extent, of attempts to work out the

details of these generic answers for particular experiments, situations, or phenomena.

The methodological advantages of the simulation technique can be organized into two

groups, each group representing an issue with several different facets. First, there is the issue of

completenesa. If a simulation program solves a task correctly, then we know that the set of

mechanisms in it are sufficient for the task. In the opinion of the simulationist, a psychological

explanation must pass this sufficiency test before It can be seriously considered, 1. e., before it Is

meaningful to compare it to empirical observations. If a subject solves an experimental task

correctly, then the cognitive machinery In his head is thereby proven to be sufficient for the task,

and, consequently, any explanatory machinery which is not sufficient is known to be incomplete,

even before it is confronted with data. Sufficiency is a logical criterion for the adequacy of an

explanation, similar to the criterion of consistency with respect to theories in mathematical

physics. (An inconsistent set of equations is not an adequate physical theory.) Logical (as opposed

to empirical) criteria for the adequacy of theories have not played an important role in the

history of psychology, so it is not surprising that the sufficiency argument seldom is carried out

or mentioned in actual simulation work, although it figured prominently in the argumentation of

the programme founders (Newell & Simon, 1905).
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In another facet of completeness, the simulation programme emphasizes that human beings

are complete agents. Strictly speaking, there are no "perceptual tasks", "memory tasks",

"problem solving tasks", etc. Perception, memory, and thinking are involved in every cognitive

performance. It follows that there cannot be a theory of problem solving, or of memory, or of

perception, because such a theory could not be tested against data; only complete systems, which

have the entire range of capabilities (albeit, perhaps, in simplified form), and which shows

explicitly the interactions between them, only such theories, the sirnulationist claims, can be

meaningfully compared to empirical data.

Next, there is the issue of application, which also has several different facets. One essential

use of a theory or a model is to derive predictions from it. In the case of a simulation model,

predictions can be derived by running the model on the computer. Thir4 a convenient and inter-

subjectively valid way of deriving predictions to be tested in experiments. We can also apply the

model to situations which we have not observed (and perhaps could not observe), and so predict

what the simulated person would have done in those situations. Other kinds of thought

experiments are also possible. For instance, Ohisson (1980) deleted randomly selected portions of

the knowledge-base of a simulation program. Runs with the so mutilated program showed that

the smaller knowledge-base did not cause the program to have fewer correct answers on a

standard set of problems, but that the program had to work more in order to reach those

answers. One can imagine running a simulation model under varying assumptions of short-term

memory capacity, under assumption of perfect long-term memory recall, or under any number of

extreme conditions, in order to investigate the implications of the principles embodied in it.

In summary, the computer simulation programme starts with the idea that a human being

who is trying to cope with an intellectual task is applying a strategy to that task. If the strategy

can be embedded in a computer program, then the process of executing that program on a

computer can serve as a model of the mental process of the human while solving that task. This
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research programme provides generic answers to tne problems of why there are performance

differences across problems, across individuals, and over time, as well as a principled conception

of what remains Invariant across those dimensions. The maln methodological advantages of the

simulation technique are that the medium forces the theoretician to produce complete

explanations, and that the model, once constructed, can be applied to derive predictions and

perform thought experiments.

The emulationist's workmode

Suppose that we have observed a particular person - a school child, a chess player, a doctor

- while struggling with some intellectual task - a subtraction problem, an end-game, a tricky

diagnosis - and that it is our goal to explain the observed performance. What shape does this

activity take?6

The simulationist will begin with task analysis, I. e., with an effort to acquire as thorough

an understanding of the task as possible. This might involve solving the task himself, perhaps

repeatedly, and reflect on his own solution to it. It might Involve reading and studying the

knowledge domain to which the task belongs, perhaps even Interviewing experts in the relevant

field. What knowledge is necessary in order to handle the task? What knowledge is useful? What

would be a useful organization of that knowledge? What different methods apply to the task?

Eventually, the theoretician should be able to write a computer program for the task, execute it,

and verify that it does, in fact, solve the task.

Two important aspects of simulation research are already evident. First, the simulationist

must concern himself with the specific content of knowledge. Vague notions of "amount" of

knowledge do not suffice for the writing of a program; the knowledge to be included in a program

must be specified precisely. Second, the simulationist Is likely to attend to procedural knowledge.

5
The reader might want to compare the description given here with Kieras (1085) and Young (1085).
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The methods, strategies, heuristics, tricks, rules of thumb, shortcuts, tactics, recipes, routines,

and procedures of the relevant domain are of central interest because they constitute so many

ideas about how a prnram might operate. Again, vague notions of, say, "cognitive style" do not

suffice; the methods to be included In a program must be fully specified. In short, the writing of

programs forces the simulationlst to consider strategic knowledge, to consider the content of that

knowledge, and to consider It in almost insufferable detail.

Once a running program has been constructed, the next task Is to add psychological

considerations. How do humans typically solve the relevant task? What changes should be made

in the program to make it behave more like a person? When a first approximation has been

achieved, It should be run on the same task as the human subject and a detailed trace of the

program's behavior recorded.

Next, there follows the comparison of the trace of the simulation model with the behavirr of

tbe simulated person. The success of the model Is measured by how closely its trace reproduces

the observed performance. For Instance, if a program Is to be a good model of, say, a certain

chess-player's skill, then it should certainly make the same chess-moves as that player when

presented with the same chess-board configurations. Notice, in particular, that if the player

makes mistakes, I. e., overlooks a strong move, then we would expect a good simulation model of

him to overlook that same move. The basic evaluation principle is that if the subject gives answer

A (correct or incorrect) to problem P. then the simulation model should produce answer A to

problem P.

Of course, one can write many different computer programs which produce a particular

answer to a particular problem. The construction of a simulation model needs to be informed and

constrained by a wider data base than a single response. One approach to constraining model

construction is to increase the temporal density of Information about the particular performance
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to be simulated by using detailed recordings of human performance, such as think-aloud

protocols, recordings of eye-movements, and video-tapes of action sequences. The purpose is to

achieve such a rich description of the performance so that differences between the computer trace

and the human performance can easily be detected, and so that success on the part of the

simulation is unlikely to come about accidentally. The evaluation principle used here is that the

greater the amount of detail the simulation can reproduce or explain, the better it is (Newell &

Simon, 1972).

A second approach to constraining a 3imulation model is to simulate performaace on a

range of related tasks. The purpose Is, again, to achieve such a rich description of performance

that success in modelling is unlikely unless the model captures the essence of the underlying

mental processes. The evaluation principle used here is that the wider the range of performancel.

a simulation can explain (at a given level of detail), the better it Is (Kossiyn, 1980). Once the

simulation model is confronted with data and the inevitable discrepancies noted, the simulationist

enters into a sequence of successive revisions and re-comparisons, until the model has reached the

desired level of accuracy.

In summary, the shape of the research activity generated by the simulationist idea is as

follows: (a) Select a task to study. (b) Analyze and study the task until it is thoroughly

understood. Write a computer program which can solve the task. (c) Collect observations from

one or more human subjects solving the same task. (d) Revise the program in the way suggested

by the data. (e) Run the program and compare its trace with the behavioral record. (f) Ponder

what the implications are of the mis-matches between the computer trace and the behavioral

record, and try to revise the model so that it reproduces the behavioral record better. The

criteria for a successful explanation are that the trace of the program reproduces the human

performance in some detail. The longer and more complicated the performance and the closer the

detail in which it is reproduced, the better the simulation. Furthermore, if the model can
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reproduce an entire set of related performances, then the larger the set, the better the simulation.

The Issues involved In the empirical evaluation of simulation models have been discussed by

Kleras (1984, 1985), by Newell & Simon (1972), especially In chapters 5 and 8, and by Tuggle &

Barron (1980), among others.

The activity of constructing an explanation within the simulation programme Is a synthetic,

rather than analytic, activity: an explanation is achieved by inventing and putting together a

system, a device, which produces the event to be explained. Explaining Is akin to designing. A

model is built by making choices on a number of design issues (Moore & Newell, 1974), e. g., what

knowledge the subject had, what method the subject was using, what aspects of the task he

attended to, what Is the organization of the subject's knowledge, how are procedures represented

in the subject's head, how Is procedural knowledge used, what memory stores are there and what

capacity limitations, If any, are they subject to, etc. Each saulation model represents a

particular combination of choices on these and similar issues. A combination of choices constitutes

a specification of the simulation program; computer implementation of that specification is

analogous to the building of a physical device from engineering specifications.

The function of empirical observations in this research programme Is different from its role

in traditional experimental psychology. In a traditional study, the purpose of observing a person's

performance Is to ascertain the effect of some stimulus variatic nn his responses. In the simulation

programme, the function of empirical investigations Is, broadly speaking, to describe human

performance In as much detail as possible, in order to constrain model building.

As the cycle of choosing tasks, observing human subjects, programming and testing models,

continues, the simulation programme claims, we successively build up knowledge of what

processes are necessary to accurately mimic human performance. In this research programme,

knowledge takes the form of know-how. Advances In knowledge will show up In the form of
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Increased ability to construct successful simulations. In the end, the simulationist claims, we will

know enough about human cognition so that given only minimal information about an individual,

we can quickly and easily put together a simulation model for his performance on some task, a

model whici will simulate that performance to some chosen degree of accuracy. Analogous to a

physicist wbo can predict the trajectory of a particle, given its mass, its speed, and the direction

in which it is moving, a simulatIonist will be able to predict a "cognitive trajectory", a solution

path, given certain initial parameters (e. g., the subject's representation of the task, his previous

knowledge, etc.).

Selected Review of Simulation Studies

The computer simulation idea originated within the study of problem solving. Over the

three decades since the original Newell, Shaw, and Simon (1958) paper, the range of problem

solviLg tasks used in simulation studies has grown continuously. Some of these tasks are puzzles

with little or no pedagogical interest (e. g. Atwood, Masson, & Poison, 1980; Karat, 1982;

Ohisson, 1984b; Reed & Simon, 1970), but the last decade has witnessed a strong and growing

trend to study class-room tasks, especially problems taken from mathematics and natural science.

Detailed analyses of problem solving strategies is a hallmark of this strand of simulation research.

A second strand of simulation research is inspired less by ideas about thinking than about

memory and language. Human long-term memory is a huge mass of diverse, irregular, vague, and

Incomplete descriptive knowledge which is typically extended, maintained, and used through acts

of verbal communication, such as reading text or answering questions, and which Is prone to

forgetting. The us( o' semantic networks of various types to describe this knowledge base and its

associated storage and retrieval strategies, and the willingness to implement large systems, are

hallmarks of this second strand of simulation research.

In the following, I will briefly review four groups of simulation studies, three of which

beloLg to the first strand described above, while the fourth group belongs to the second strand. In

22



20 Computer Simulation

a fifth and final miscellaneous group, I will mention some studies which do not fit neatly into

either of the two main strands. The reader is warned against treating the present summary as a

comprehensive overview. It is focussed on simulations with pedagogical relevance.

Cognitive development. The computer simulation community turned its attention to

cognitive development early on. Several studies carried out in the seventies simulated childrens'

behavior on classical Plagetian tasks, such as seriation of weight (Baylor and Gascone, 1974;

Baylor, Gascone, Lemoyne, & Pothier, 1973) and of length (Young, 1976), classification and

sorting (Klahr & Wallace, 1970), class inclusion (Klahr and Wallace, 1972), conservation of

quantity (Klahr & Wallace, 1973), transitive inference (Klahr & Walls Pt, 1976), object constancy

(Prazdny, 1980), etc.. The choice of Plagetian tasks was natural, given the amount of interest in

Piaget's work in the sixties and seventies. The approach of these studies was to make detailed

observations of childrens' behavior at the various developmental stages, and then write a separate

simulation for each stage. The sequence of simulation models as a whole constitutes a

representation, a slide-show, as it were, of the growth of mastery of the task. By comparing the

successive models in the sequent a, one can describe the developmental advances in theoretical,

rather than behavioral, terms. One major conclusion from this mini-tradition is that the

differences in the details of cognitive strategies within so-called developmental stages are at least

as dramatic as the differences across such stages.

Although simulation studies of Piagetian tasks and phenomena are still carried out (see, e.

g., Nason, 1986), current simulations of cognitive development generally show less of a Plagetian

influence both in the choice of experimental tasks and In the theoretical questions asked. Issues

about problem solving strategies, task encoding, and working memory capacity are explored in

the context of tasks ranging from arithmetic to the Tower of Hanoi puzzle, and to the debugging

of LOGO programs (Carver & Klahr, In press; Klahr, 1985; Klahr & Robinson, 1981; Siegler,

1986; Siegler & Shrager, 1984).

'
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Most simulations in the field of cognitive development are not, strictly speaking, simulations

of development, but shnulations of childrens' (as opposed to adults') performance. They simulate

performance at one or more stages of intellectual development, but they do not yet simulate the

passage from one stage to another. The exception to this rule is the work by Wallace, Kiahr, and

Bluff (In pre.3), which attempts to deMgn an integrated system capable, in principle, of

reproducing human cognitive development.

Per formance models for educationally relevant problem solving tasks. Recently,

simulationists have turned their attention to tasks which appear in the curriculum. Mathematics

provides a store of well-defined tasks at many different levels of complexity. Arithmetic (Ashcraft,

1983; Briars & Larkin, 1984; Fletcher, 1985; Greeno, Riley, & Gelman, 1984; Hiebert & Wearne,

in press; Kiahr, 1973; Neches, 1981, 1982; Resnick & Neches, 1984; Riley & Greeno, 1980, RHey,

Greeno, & Heller, 1983; Siegler, 1980; Siegler & Shrager, 1984; VanLehn, 1983), algebra, (Greeno,

Magone, Rabinowitz, Ranney, Strauch, & Vitolo, 1985; Neves, 1978; Paige & Simon, 1965;

Sieeman, 1982, 1984) and geometry (A.nderson, 1981b, 1982; Andersor., 1983a; Anderson, Greeno,

Kline & Neves, 1981; Greeno, 1970; Greeno, 1978a;) have all been targets for simulation efforts in

recent years. Since the notion of an "error" comes naturally to the discussion of these domains,

the design of computer programs which do mathematics Incorrectly has become a major research

activity. Many studies try to account for errors by showing how they would arise from the

execution of some mathematical procedure which deviates from the correct procedure in some

precisely specified (and sometimes minor) way. A major conclusion of this research is that errors

cannot be thought of as resulting from missing knowledge only; incorrect mathematical strategies

in students are not Just incomplete, they also contain "mal-rules", I. e., components which are not

part of the correct skill (Anderson, Boyle, & Yost, 1985; Brown & Burton, 1978; Burton, 1982;

Evertz, 1982; Ohisson & Langley, in press; Sieeman, 1982, 1984; Young & O'Shea, 198a).

A second area of the curriculum which has been mined for simulation targets 1s natural
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science, especially physics problem solving (Bhaskar & Simon, 1977; Larkin, 1981; Larkin,

McDermott, Simon, & Simon, 1980a, 1980b; Larkin, Reif, Carbonell & Gugliotta, in press). One

approach used in this research Is to simulate both a (successful) novice and an expert problem

solver, and then characterize the differences between their solutions. One conclusion from such

research Is that expert problem solvers in physics employ mental representations of problems

which are specifically physical, while novices aU,end too much, or too soon, to the mathematics of

the problem.

Human performance on non-academic but educationally important tasks like typing,

electronic trouble shooting, and the operation of complicated machines of various kinds (including

computers) have also been investigated in simulation studies (Anzal, 1984; Card, Moran, &

Newell, 1983; Kleras & Poison, 1985; Rumelhart & Norman, 1982; White & Frederlksen, 1984).

Such studies are about to mature into a new kind of applied psychology with strong implications

for workplace design and personnel training.

The acquisition of cognitive skills. Given a sequence of models each of which simulates a

person's performance at different developmental stages or at different points in time, the next

question to ask is what mechmIsms affect the transition from one to the other. In the computer

simulation approach, this question is, of course, approached by incorporating learning mechanisms

into simulation models. Computer learning is still a rather novel phenomenon even within the

field of Artificial Intelligence, and running simulation programs which simulate how humans learn

cognitive skills are few and far between. The volumes by Anderson (1981a) and by Klahr,

Langley, & Neches (in press) cover a significant portion of the relevant research..

A small group of simulation studies have tried to model human learning in artificial task

domains. AZIZal and Simon (1979) simulated one person's successive mastery of the Tower of

es
ee lefitchell, Carbonell, & Michalski (1088) for an overview of relevant Artificial Intelligence research.
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Hanoi puzzle. Langley (1983a, WS) has applied a theory of discrimination learning to several

puzzle tasks. In a similar effort, golftsson (in press-a) simulated the acquisition of strategies for

several puzzle tasks, as well as Ve transfer of training from one ,roup of problems to another

within a very simple task domain, Algol's= and Simon (1984) have proposed a general theory

of learning to recognize patterns, With as nonsense syllables. Rosenbloom and Newell (1988) has

suggested a general scheme for lk ulnas learning called "chunking" which has beeo used to

simulate performance on laboratoy, reaction-time tasks, with excellent fit to human data. Ohisson

(in press-b) has designed a learnikA Mechanism Which simulates successive changes In the mental

representation of a simple verbal ,s(:)noing task, guided by general world knowledge.

However, there is also a hohdfql of studies simulating the acquisition of cognitive skills

relevant to classroom tasks. John Vderson and coworkers have simulated learning to construct

proofs in elementary plane geome0 (Azderson, 1982; Anderson, 1983a; Anderson, Greeno, Kline,

& Neves, 1981) and to write simpfle computer programs (Anderson, 1988; Anderson, Farrell, &

Sauers, 1984). Kurt VanLehn's sitM,t1os of the acquisition of the standard algorithm for multi-

column subtraction takes into aciAirlt an entire lesson-sequence, taking a lesson to be a set of

solved examples and letting tbc trAllatIon program learn from them (VanLehn, 1983). Neches

(1981, 1982) has simulated the disti"very of the so-called MIN-strategy for simple addition7. Neves

(1978) has simulated the learning 4 algebra rules from solved examples.

Learning, retaining, and retitlling declarative knowledge. The simulations discussed so far

are all concerned with procedural filawledge, Le., knowledge about how to act in order to reach

certain goals. A second main strVid of simulation research is mainly interested In declarative

knowledge, i.e., knowledge about `what is true of the world. The paradigmatic task in this

tradition is to read a text (perhaW (Ally la single sentence), and then, after some period of time,

7Empirical research has established that evilkll'ets csa discover the MIN-strategy on their own (Omen & Resnick, 1077).
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answer one or more questions about it. A simulation model for this task has to contain

assumptions about how long-term memory is organized, about tow new knowledge is added to it,

and about how information is retrieved from it. It is desirable, albeit difficult and laborious, to

provide such a simulation with a natural language front-end which models how people understand

language and which allows the model to acquire its knowledge by reading actual texts. This type

of simulation model grew out of the idea of semantic networks (Qui !Ilan, 1988, 1989) and

flourished in the seventies (Anderson, 1978; Anderson & Bower, 1973; Collins & Qui !Ilan, 1989;

Frijda, 1972; Kintsch, 1974; Miller, 1981; Norman, Rumeihart, & the LNR group, 1975;

Rumeihart, Lindsay, & Norman, 1972; Schank, 1972, 1975; Schank & Abelson, 1977; Schank &

Colby, 1973). The reviews by Frijda (1972) and by Chang (1980 provide further discussion about

this strand of simulation research.

One of the main results of research with simulation models based on natural language

interfaces and semantic networks Is that systematic and reasonable strategies for storage and

retrieval of declarative information can produce the kinds of confusions, transformations, and

retrieval failures which are typical of human performance (Kolodner, 1983a, b, 1984). Another

lesson from this type of research is that acquisition and utilization of declarative knowledge is

always context dependent. For instance, a question Is answered differently depending on when

and where it is asked, by whom, etc. The complexity of declarative knowledge acquisition may be

responsible for what seems to be a recent decline in this strand of simulation research: current

simulations of memory retrieval tend to shy away from implementing the actual content of

human long-term memory in favor of more abstract, and therefore more computationally

tractable, models (Hintzmann, 1984; Raajmaker & Shlffrin, 1981; Walker & Kintsch, 1985;

Wiegerswa, 1982.).

Simulations of long-term memory have, in principle, tremendous pedagogical relevance. In

school subjects like history, geography, and social studies, "learning" is, to a large extent,
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"studying", I. e., acquiring mostly descriptive knowledge through reading or listening. The

simulation models mentioned here contain explicit hypotheses about the acquisition, retaining,

forgetting, and recalling of declarative knowledge. Clearly, such hypotheses must have

implications for how declarative knowledge should be presented to facilitate learning. However, in

spite of their obvious pedagogical relevance, simulation models within this strand have so far not

figured frequen*.iy in educational applications. One exception to this rule is the work by Kolodner

(1983c) in which she applies considerations of long-term memory to the investigation of how

expertise in psychiatric diagnosis is acquired.

Miscellaneous. There are other simulation studies which deserve mention as well, although

they do not fit neatly into any of the above categories. Of particular interest from a pedagogical

point of view are simulations of reading (Just & Carpenter, 1984; Just & Thibadeau, 1984; Kieras,

1982, 1983; Thibadeau, Just, & Carpenter, 1982). The efforts to simulate skill acquisition has

spawned a handful of studies trying to simulate initial language acquisition (Anderson, 1983b,

chap. 7; Langley, 1982; Wolff, 1980). A particularly fascinating application of the natural

language/semantic network approach to computer simulation is the effort by Colby (1973, 1975,

1981) to simulate neurotic and paranoiac thought processes. Another type of model tries to

simulate human performance on various visualization tasks. This mini-tradition was initiated by

Baylor (1973), has been intensively developed by Kosslyn (1980, 1985), and continues to generate

new ideas about the mind's eye (Just & Carpenter, 1985; Morgan, 1983). Finally, the reader might

be interested to know that even such a difficult-to-grasp process as daydreaming is now being

implemented on computers (Mueller & Dyer, 1985a, b).

Critique of the Simulation Programme

Three decades worth of experience with the simulation programme should be enough to

form at least a tentative evaluation of it. A scholarly appraisal of the programme cannot be

attempted here. What follows Is the view of one participant and practitioner.
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It may at first glance seem as if the simulation programme has been spectacularly successful

in furthering our understanding of cognition. Today, the entire field of cognitive psychology

speaks the language of symbolic computation; the psychological journals are full of mental

representations being encoded, stored, retrieved, and processed in all manner of ways. However, a

critique of the simulation idea must distinguish between the information processing conception of

mental processes, on the one hand, and the simulation idea proper, on the other. The value of

seeing cognitive processes as symbolic computations is not in doubt; at least, it will rot be

questioned here.8 The question is whether the simulation technique, I. e., the explanatory

procedure which leads to implemented, runnable computer programs, provides additional

advantages over and above the advantages of adopting the information processing point of view.

When the question is posed in this way, the case for computer simulation is weak indeed. It

is difficult to think or a single example of a surprising, important, or interesting discovery which

has been made by running a simulation model. It is equally difficult to think of an example of

some dramatic prediction which has been made by a simulation program, a prediction which was

subsequently born out by data. Nor is it easy to state the principles presumably established by,

say, the simulation studies mentioned in the last subsection. As far as this author knows, no great

theoretical synthesis has been achieved by taking two simulation programs and combining them

into a new model with more predictive power than either of the parts. Finally, there seems to be

little or no growth of consensus about what mechanisms one must postulate in order to have a

reasonable simulation of a human thought process.

These discouraging observations demand an explanation. We need to scrutinize the

difficulties and disadvantages with the simulation programme, distinguishing as we do so between

the following three questions:

1. Have the practitioners carried out the programme carefully?

8Connectionina does, to some extent, pose that question.
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If the practitioners have been careless or neglectful or simply misunderstood the
simulation technique, the lack of results would not speak against the programme itself.

2. To what extent have the practitioners been limited by their tools?
Computer simulation can only proceed where Artificial Intelligence has cleared the
way. If current programming techniques are inadequate to capture some aspect of
human knowledge, the failure to simulate that aspect cannot be chalked up as failure
of the simulation programme. The limitations of the programme itself has to be
distinguished from the limitations of our current resources for carrying it out.9

3. What are the inherent weaknesses, inconsistencies, and difficulties with the simulation
programme?

Keeping these three questions in mind, we turn to a brief discussion of the problems

associated with, respectively, convenience code, disembodied processes, effort, brittleness,

empirical validation, restricted public access to models, and informal statement of theories.

Convenience code. Any simulation program will contain code which helps make the

program executable but which does not represent any psychological hypotheses. For instance, a

simulation of chess playing might contain a routine which finds all legal moves in a chess board

configuration. The psychologist may not have any hypotheses about how the simulated chess

player finds the legal moves; the theory might be all about choosing between moves, once found.

Thus, the psychologist writes any convenient piece of code which will accomplish the move

finding task, and lets his theoretically motivated code select a move by operating on the output

from the former.

The problem is that the motivated code and the convenience code interact in producing the

behavior of the program. We have no guarantee that the performance of the program depends in

essential ways on the theoretically motivated parts of the code. For instance, suppose the move

finding routine is faulty, so that it ignores a certain class of weak but legal moves. The

°The situation here is similar to that which holds in physics. Physicists are dependent upon mathematical results in order
to develop their theories - with the result that physicists sometimes make substantial contributions to mathematics.
Similarly, psychologists with computer simulation on their agenda sometimes have to dig into front-line A. L research
problems in order to develop the tools they need.
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theoretically motivated move-choosing routine will never choose one of those weak moves, not

because it is intelligent enough to avoid them, but because it never gets to consider them. The

program "predicts" that the chess player will never make that particular type of error. If this

"prediction" Is born out by observations, it will be taken as support for the theory behind the

program, although it actually depends on the design of the convenience code. The definition of a

"legal move" In chess Is sharp enough so that the particular accident described in this illustrative

example is uniikely to happen. But other, equally disastrous interactions between motivated code

and convenience code may be opaque enough to go unnoticed by the programmer. Thls problem

has been discussed by Frijda (1987), Kieras (1985), and by Neches (1982).

The architecture-program distinction was proposed by Allen Newell (1972; 1973a; 1973b) as

a solution to this problem. He argues that simulationists should create psychologically motivated

programming languages in which to write their models. The very structure of such a language -

Its architecture - should be based on psychological hypotheses, so that the programs written in it

need not contain any convenience code. AU code in a simulation program should, In principle,

admit of psychological interpretation.

The two most ambitious efforts to date to create psychologically motivated programming

languages are the ACT architecture by John Anderson (1978, 1983b) and the Soar architecture by

Laird, Rosenbloom, & Newell (1980. Approaching the problem in a slightly different way, the

PRISM programming language is an attempt to provide a flexible architecture, in which certain

aspects, e.g., the number of working memories, can easily be changed to accommodate changes in

theoretical assumptions (Langley, 1983b). However, the call by Allen Newell to distinguish

between architecture and program and to write simulation programs in such a way that their

every feature admits of psychological interpretation, this call has, to a large txtent, gone

unheeded.
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Disembodied processes. A human being Is a complete agent, capable of perception,

thinking, remembering, motor action, and learnir- Clearly, all these capabilities enter into the

solution to any cognitive task; observable behavior is a result of the interaction between them.

Any explanation of behavior must describe the role of each process in that interaction.

Psychologists, however, tend to be more interested in one of these capabilities than in the

others. When they turn to computer simulation, they, naturally enough, want to simulate the

capability they are most Interested in. The result is often a simulation of what we might think of

as s disembodied process. For :distance, simulations of problem solving often Ignore the question

of how the subject's thinking interacts with his long-term memory; what is the problem solver

reminded of while VInking about the problem? Similarly, most simulations of long-term memory

can answer questions through retrieval of information, but not through problem solving.

Simulations of either problem solving and question answering usually ignore issues of learning.

Yet another type of incompleteness which is virtually universal Is to ignore the perceptual-motor

interaction with the environment. Simulation programs regularly assume that the entire task

description is present and accessible In working memory, finessing the issues of attention

allocation and of physical manipulation of task materials.

Taking a purist stance, I conclude that such simulations are useless, because we already

know that the observable behavior of a person comes about through an interaction between

perception, memory, thinking, motor action, and learning. The predictions of a program which

represents one of these processes remain indeterminate until its interactions with the other

processes have been specified. Every simulation should have a complete set of mental processes, I.

e., mechanisms for remembering, thinking, and learning, a (simulated) environment, and

capabilities for perceptual as well as a motor interaction with that environment. The simulation

programme calls for simulations of agents, not of disembodied procesr-s.
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Effort. Writing a serious simulation model is no small enterprise. Several months have to

be spent analyzing the task, many more in Implementing a program which can solve it, and, quite

likely, many more still in revising it until it actually mimics a human subject. If the target task Is

at all mimplex, considerable A. I. know-how might be needed to make a runnable program.

This fact has unfortunate consequences for how the simulation programme is carried out.

First, there is, quite naturally, a reluctance to explore alternative explanations of' a phenomenon.

If getting one simulation model up and running is laborious, the idea of doing it twice is not

attractive. To the best of my knowledge, no researcher to date has implemented two radically

different simulation models for the same set of observations and then compared them.

(Comparisons between two different theories with respect to the same phenomenon is, of course,

standard procedure in other domains of science.) Second, there Is a certain reluctance to make use

of other people's models. I know of no example of a researcher constructing an explanation of his

own data by re-implementing somebody else's simulation model from the published accounts of it,

and applying it to those data. (Again, using other researchers' theories in constructing

explanations of new data is standard procedure in other domains of science.)

The problem of effort has no radical wlution. We can only hope that more powerful

A. I. programming tools and accumulation of know-how within the simulation community will

eventually shrink to reasonable proportions the amount of work that has to go into each new

simulation model.

Brittleness. One of the major difficulties with A. I. programs at the current time is that a

program which works well on one task often fails dramatically on conceptually similar tasks.

Since computer simulation models are limited to what can be done with current

A. I. progremming techniques, simulations are brittle as well. This has the unfortunate

consequence of preventing thought experiments and empirical explorations of programs. Making
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changes in a program and then running it can be a frustrating experience, because it may turn

out that the changes render the prozram impossible to execute. Exploration of the generality of a

model can be discouraging, because there may be precious little in the model which transfers to a

new task domain. In short, applying the program to other problems than the ones it was designed

for may turn out to be impossible.

However, brittleness is not a methodological problem, but a theoretical one; it Is a

consequence of our ignorance of the nature of intelligence. If we understood how human minds

avoid being brittle, we would also understand how to write non-brittle simulations. Understanding

intelligence is, of course, our goal. 13t!ttleness and its associated difficulties are t ot properties of

the simulation methodology, but indications of our progress, or lack of progress, with respect to

our research agenda.

Empirical validation. Perhaps the most commonly noted problem with simulation models is

that they are severely underdetermined by the datl they are applied to. For any model, it seems,

one can think of an alternative model which accounts equally well for the data. The large number

of assumptions in a simulation model and the complexity of their interactions - so the argument

goes - make it very difficult, if not downright impossible, to test a model stringently against

empirical observations.")

The first thing to notice about this argument is that the possibility of alternative

explanations for a phenomenon is not a feature of the simulation programme, but an aspect of all

scientific research. Since other branches of science have coped successfully with this difficulty, the

argument does not have any force unless it can be shown that the problem of choosing between

rival exp.anations is inherently more severe with simulation models than with other kinds of

theories. No such demonstration has yet been provided.

10
John Anderson has argued that this is necessarily so; see Anderson (1979).
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The second thing to notice is that current practice with respect to empirical validation of

simulation models is unsatisfactory. The use of temporally dense behavioral records like think-

aloud protocols (Ericsson & Simon, 1984), eye-movement recordings (e.g., Just & Carpenter,

1985), and video-tapes of actions (e.g., Kiahr & Robinson, 1981) is still uncommon. Even worse,

when those methods are used, the sequential information they contain is usually destroyed by

categorization or aggregation procedures of various kinds. Since the main difference between two

different models for the same task is the sequence of intermediate results that they produce,

ignoring sequential information is fatal. Furthermore, the methodological insight that it is a more

challenging task to simulate a single performance in detail than to simulate the global

characteristics of average performance (Newell & Simon, 1972) has largely gone up-aoticed.

Cognitive psychology has adopted the theoretical tool of computer simulation, but it has, by and

large, not adopted the associated empirical methodology of temporally dense recordings of single

performances.

It appears, then, that simulation models are more underconstrained by data than they need

to be. The empirical validation of simulation models is a problem, not because of difficulties

peculiar to the simulation programme, but because of the nature of scientific research in general

and because of the reluctance of psychologists to adopt the empirical methodology that was

invented for that very purpose.

Restricted public access to models. A computer program is not easy to read, its code I:

usually too voluminous to publish, and it Is sometimes difficalt to get a program developed on one

computer to run on another. Consequently, simulation models are essentially private. They are

described in scientific publications, but they are seldom used in a serious way by others than their

creators. To some critics, this feature of simulation contradicts the public nature of scientific

knowledge (Fr Ilda, 1987; Neches, 1982).
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This criticism is correct in its statement of the facts and It indicates a serious difficulty with

the simulation programme, but I think the critics have misinterpreted the nature of that

difficulty. To clarify the issue, we have to make use of the distinction between theories and

models. A model does not, In and of Itself, represent knowledge. A model is a particular, in

philosophical terminology; in fact, being itself a thing, it is every bit as particular as the thing it

models. A simulation model does not "say" anything at all about human cognition; it does not

make pronouncements or assertinns; like all other objects, it just exists. The activities of

designing, implementing, and applying a model can help produce knowledge, but that knowledge

resides in the head of the model-builder, not In the model. It is certainly essential to make that

knowledge publicly accessible; it Is more doubtful if the same is true of the model itself.

Consider the double-helix constructed by Watson and Crick as a model of the DNA

molecule (Watson, 1988). In no sense was the model itself - the rickety construction of differently

colored pieces of metal - made public. They did not ship it to other laboratories, nor would such

a road show have served any purpose. Concrete, physical models used in scientific research are

usually private. The important thing is that the corresponding theory is given public expression.

In summary, the criticism that simulation programs are private tools is true, but It makes

the wrong point. It treats programs as if they were theories rather than models. A model may

remain private, as long as the theory It embodies does not. As we shall see below, the crux of the

matter Is exactly how to make the theory public.

Informal statement of theories. A programming language is a formal notation in which

one can describe a concrete model of information processing. However, there is no correspond:ng

formal language for expressing the theory behind that model. Therefore, simulationtsts are forced

to use the only resource available, namely natural language. The psychological principles which



34 Computer Simulation

guide the construction of the formal models are themselves Informally stated.I1

This has several consequences. First, It is unclear by what criterion a model is judged to

instantiate a particular theory. If two researchers disagree whether a certain model embodies

such-and-such a theory, how would one decide the issue in a disciplined way? (This difficulty

raises the same question as the problem of convenience code discussed above: how do we know

that the runs of a particular simulation program are relevant to the theory we are Interested in?)

Second, since the theory behind a simulation model is stated informally, we cannot expect the

simulation technique to produce the advantages of formalized theory construction that were

mentioned in the introduction.

Thus, the simulation programme is radically incomplete. It provides a methodology for the

construction of concrete models of information processing mechanisms, but It does not provide a

tool for the statement and analytical treatment of information processing principles. What is

needed is a high-level, formal, so-called specification language in which psychological principles

can be stated and deductively analyzed and from which specific simulation models can be

generated in a systematic way.I2

Hagert (1988) has proposed a solution to this problem, based on logic programming

techniques. In his method, a programs specification (I. e., a theory) is stated In formal logic.

Procedures (I. e., models) which satisfy that specification can be generated by deduction. The

procedures are directly executable In the Prolog programming environment, so they can be run

and empirically validated. The deductive derivation of a procedure (model) from a specification

(theory) ensures (1st (a) the procedure satisfies the specification, and (b) that all the assumptions

11Tbe
reader may want to co.,firm this by, e. g., looking at Chapter 14 of Newell and Simon (1972), where they state their

theory of problem solving, or the statement by Anderson (1983b), pp. 17-36, of the ACT theory.

12The new approach of eonneetionism has ouch a two-layered theoretical methodology.
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behind the procedure have been stated explicitly. Hagert (1988) has applied this method to the

simulation of a simple short-term memory tark. It remains to be sten whether the method is

useful in the construction of more complicated simulation models.

Summary. Although the simulation programme, as distinct from the informatioz-processing

point of view, has ad a dramatic effect on psychological research, It has not been a spectacularly

successful enterprise. This b due, in part, to the fact that its practitioners have not carried out

the program carefully, and, In part, to limitations on the available programming tools. However,

the main weakness Is that the simulation programme is radically incomplete. It offers a technique

for building concrete models, but no methodology for stating in a precise form what we learn

from building those models. We can only express the theories we arrive at in informal language.

Consequently, research within the simulation programme does not benefit from the advantages of

formai theorizing.

Connectionism: The Return of Mathematics

Some cognitive psychologists are currently engaged in working out a research programme

which might supersede computer simulation as described on this essay. This new research

programme is commculy known as connectioniem (Feldman & Ballard, 1982). The reader is

referred to Hinton and Anderson (1981) and McClelland and Rumeihart (in press a, b) for

representative works, as well as to the special issue of the journal Cognitive Science (Volume 9,

Issue 1, 1985).

The connectionist approach is based on the idea that we should use what we know about

the brain, as well as what we know about behavior, when we try to simulate the mind. Perhaps

the most basic observation one can make about brain activity is that many parts of the brain are

active at any one time. This leads to a conception of distributed information processing, where

many processing units operate in parallel. According to this view, information processing in the

head is being done by "small" units, each of which performs a very simple processing task, like
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computing the sum of the strengths of Its inputs, and then transmits a signal to a certain set of

other such units. There tuTe many units, each of which has a large number of connections to other

units. The units all act locally, on their own inputs only, so thty can operate in parallel. The

network of units is characterized by rules which regulate the connections between units, the type

of computation being performed by each unit, and the kind of signal sent from one unit to an

other. A learning theory in this programme consists of a set of rules for how the units should

change their characteristics, e. g., wlatch signal to send, as a result of their own activity. An

information processing system built along these lines is rather different in character from the

symbol manipulation systems considered so far In this essay.

How would connectionism answer the four questions I used to introduce the traditional

simulation programme?

1. Inter-Item differences. A connectionist theory is well suited to describe task differences
which are due to interference effects and confusion; indeed, explaining such
phenomena is its paradigmatic application. When it comes to large differences in
performance, it is less obvious how the connectionist type of theory applies. Why, for
instance, should one isomorph of the Tower of Hanoi problem take 18 times longer
than another to solve (Kotovsky, Hayes, & Simon, 1985)? Why is the "envelope"
version of Wason's so-called selection task so much easier to solve then the "card"
version (Evans, 1984)*

2 Inter-individual differences. There are no particular conceptual tools within the
connectionist scheme to explain differences between individuals.

3. Change. Connectionism regards learning, or change over time in general, as a central
characteristic of cognition. A connectionist learning theory consists essentially of a rule
for how to change one or more of the characteristics of a processing unit, as a function
of the inputs it has received in the past.

4. Generality. The invariants of the mind in the connectionist programme are the
network of units, the function which maps the input signals onto an output signal, and
the rule for how to change that function.

In short, the connectionist pingramme has principled answers to the questions about change and

about invariants, but does not handle differences between items or between individuals well.

Methodologically, the connectionist approach has two strong advantages over the
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"traditionar computer simulation approach. First, it combines formal model-building with

formal theorizing, In a way which computer simulation as described earlier does not do.

Connectionist models can be implemented on a computer and simulation runs, just like other

simulation models. But due to the uniformity of the processing units and the simplicity of the

computations they perform, the behavior of an entire connectionist network can be described and

analyzed with mathematical tools. Thus, there Is a formal way of stating the general properties of

connectionist computer models."

The second methodological advantage of connectionism is that it can use both behavioral

and neurophysiological data to constrain model-building. As noted In a a previous section, one of

the problems with computer simulation models is that they are obviou3ly underdetermined by the

empirical data they are intended to explain. By letting their simulation models be models of brain

activity, the connectionists make it possible to apply what is known about the brain to constrain

those models.

The practitioners of the connectionist programme characterize their object of study as the

"micro-structure of cognition". The tasks they have studied are mostly perceptual-motor and

short-term memory tasks. This accords with a long tradition in psychology of studying tasks for

which one's theoretical approach seems to have the highest face validity: perceptual-motor

processes obviously happen in parallel and in a distributed fashion. The educational implications

of a deeper understanding of human performance on these tasks are not obvious. Application of

connectionist modelling techniques to tasks like proof finding in geometry and learning the history

of World War Il is yet to come.

The most disturbing aspect of connectionism Is the fact that it, once again, takes the

13
ne technique of doing a mathematical description of a computer simulation programme has also been used inconnection with more traditional simulation programs which nse so-called spread of activation as one of its memory retrieval

processes; see Anderson (1084) and Anderson & (1004).
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knowledge out of the theory of cognition. The point of the connectionist approach - and its most

fascinating aspect - is that it describes a type of system in which knowledge has no location, in

which knowledge is spread out among a large number of units, and In which knowledge only

exists in so far as the entire set of units reacts as a whoie in particular ways to particular

situations. Consequently, connectionism does not provide any tools for the analysis of knowledge.

We cannot, for instance, command a computer to print out a connectionist model and expect to

find its knowledge in the print-out; the only thing that can be printed is a very long list of

connections with their associated strengths, as incomprehensible as the brain itself. Thus,

cennectionism takes an anti-representational stance. There are no mental representations In the

head, no symbols which refer to the external world, nor any cognitive strategies. To the extent

that the post-war advances in our understanding of cognition are due to thinking of mental

processes in terms of operations on internal representations, under the guidance of heuristic

knowledge to that extent those advances are lost again In the connectiontst programme.

Impact of Simulation on Educational Research and Practice

Three decades of research have produced some knowledge about how to design simulation

models of cognitive processes. What Impact will this ability have on educational research and

practice?" The question turns out to have several layers, a methodological layer, a theoretical

layer, and a technological layer. Each layer will be discussed below. The final conclusion is that

the main consequence of bringing cognitive psychology into contact with education Is that

practice gets a chance to Influence research, rather than the other way around.

The computer simulation technique has two methodological consequences which contribute

to its educational relevance. The first is that tasks used in psychological experiments are now

chosen on the basis of inherent interest. Experimental tasks used to be chosen on practical

14-
brotder question of what the implications are for education of modern cognitive psycholov in general (ratherthan

just the simulation technique per se) has been considered by Gagne (1085), Frederiksen (1004) and Ohluon (1083); see alio
the collection of articles by Tama & Roofs (1980).
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grounds: They were convenient to administer, involved cheap materials that could be

systematically varied, demanded responses that could easily be registered, etc. Presumably, the

practitioners of traditional experimental psychology believed that since they were interested in

general laws of behavior, they did not have to pay attention to the particular properties of any

one task. A psychologist interested In computer simulation, however, must attend to the

particular content of the mental representations and processes involved in solving the

experimental task. Consequently, selecting an interesting task has become a central step in the

posing of a cognitive research problem. Since educatior al relevance Is one ground for regarding a

task as interesting, a significant proportion of current cognitive rewarch concerns tasks which

appear in the curriculum or in training programs of one form or another. Cognitive psychologists

now do their research on the very same tasks which teachers try to teach.

A second educationally interesting consequence of the simulation technique is the new

willingness of psychologists to study single subjects. The experimental psychology of, say,

1920-1960 dealt almost exclusively with averages over groups of subjects.15 But educators benefit

very little from knowing that people in general have such-and-such characteristics. Educational

practice depends upon the ability to react properly to particular individuals. The simulation

technique allows single individuals to be studied and modelled, which makes It relevant for

questions like "What does this student know?", "Why did this student make that error?",

"What kind of instruction does this student need?", etc.

Taking the relationship between physics and chemistry, on the one hand, and engineering

science, on the other, as our analogy, we would expect that better theories about human cognition

in general and about human learning in particular would lead to changes in educational practice.

According to this view, the Influence of the simulation technique on education world be indirect:

lb
Before that time, analyees of single subjeeta were more common. Thus, in this respect, modern cognitive psychology is

returning to an earlier methodological stance; sce Dukes (1080.
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as a research tool, it will contribute to better theories of human cognition, and these, in turn, will

contribute to the improvement of instruction.

Examples of such influences at the theoretical layer are not hard to find. For instance,

consider the notion of an arithmetic error. Due to the research by Brown and Burton (1978) and

Burton (1982), the vague idea of an arithmetic algorithm not being properly "fixed" in memory

has given way to the notion of a "buggy procedure". The latter obviously derives from the

conception of cognitive skills as analogous to computer programs. Computer implementations of,

buggy algorithms constitute concrete, detailed, and precise descriptions which can be used to

predict the behavior of a student who is the victim of a particular error. The increased

understanding of cognitive errors produced by such simulations facilitate a precise discussion of

how to diagnose errors and what remedial instruct !on to provide.

As a second example, consider the question why cognitive skills are difficult io learn.

Anderson's (1982, 1980 theory of knowledge compilation show and expect him to apply to it

immediately, rule, say, and expect him to apply It immediately. The translation of a verbally

stated piece of advice into an executable procedure which interacts correctly with previously

existing procedures is seen to be a complex process, once we try to spell it out in a computer

simulation. Similarly, VanLehn's (1983) theory of procedure induction explains why a student

might arrive at the wrong algorithm m a result of studying correctly solved examples: The

Induction of the correct procedure from the examples presupposes knowledge of what the relevant

properties of the examples are, knowledge which students do not always possess.

In short, the simulation technique does contribute to an improved understanding of the

cognition of classroom tasks, with implications for instruction. However, such knowledge transfer

is slow and uncertain; teachers do not always pay attention to research results, and researchers do

not alwaars communicate them well. Also, scientific breakthroughs do not occur every day. This
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form of Interaction between research and pedagogy Is weak and the effects are likely to be small,

at least in the short run.

However, science does not only - and perhaps not primarily - Influence human activity

through the spread of new knowledge, but through the technologies supported by that knowledge.

The main impact of simulation on pedagogy, I suggest, will be mediated by the teaching devices

of various kinds which are soon to be appear In classrooms. Current know-how supports two

types of devices which have computer models as essential ingredients: systems for automatic

cognitive diagnosis (Anderson, Boyle, & Yost, 1985; Attisha & Yazdanl, 1984; Burton, 1982;

Johnson, 1985; Johnson & Soloway, 1984; Marshall, 1980, 1981; Ohisson & Langley, in press;

Reiser, Anderson, & Farrell, 1985; Sleeman, 1982, 1984) and intelligent tutoring systems

(Anderson, Boyle, Corbett, & Lewis, 1988; Anderson, Boyle, & Reiser, 1985; Beak ley & Haden,

1985; Sleeman & Brown, 1982; Wenger, 1985). Such devices are beginning to appear in schools

and their presence there will grow more frequent over time.

Like any other type of tool, these tools will shape the activity in which they are used. To

clarify the nature of this effect, let us consider, as an illustrative example of a socially Influential

technology, that ever-present communication tool, the telephone. The effect of the telephone on

our communication habits is a result of the functionality of the device, not of Its scientific

underpinnings; the telephone does not influence people by making them think of electricity as

they dial, nor Is w!de-spread understanding of, or even belief in, the theory of electricity a

necessary condition for the telephone to have an impact. Similarly, the new teaching devices will

shape instruction In ways which depend primarily on the activities that the devices allow. For

Instance, Intelligent tutoring systems can monitor practice in a constructive way, freeing the

teacher from the task of correcting essays and worksheets; while systems for automatic cognitive

diagnosis enable a teacher to have a detailed picture of the knowledge state of each student In her

class. We do not yet know what effects such devices will have on teaching. The point argued here
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Is that the effects, whatever they turn out to be, will be caused by the functions of these tools - to

monitor practice, to perform cognitive diagnosis - rather than by the content of the psychological

theories which motiv&te their design. Furthermore, the appreciation of those functions does not

presuppose a general understanding of the underlying theories. Hence, the slowness of knowledge

transfer between the research community and the practitioners does not limit the Impact of such

devices on education.

The discussion so far has asked the question of how simulation might influence education. I

now want to argue that the teaching devices made possible by computer simulation open up a

channel through which educational practice might come to decide the fate of psychological

theories and set the agenda for psychological research. Consider the fact that tutoring systems,

once placed in the classroom, constitute the most efficient tool for collecting precise and

ecologically valid observations about human cognition that has ever been devised. Unprecedented

amounts of empirical information can be collected with very little effort. We can foresee at least

the following effects on research:

1. New learning phenomena will be discovered. It would be truly surprising if data
collection on the scale that Is now becoming possible did not reveal previously
unnoticed regularities'ILhuman learning.

2. The probability that educational research will be side-tracked by artifactual
experimental effects will decrease. A proposed regularity or phenomena can be checked
against a vast, e .1cally valid data-base.

3. Int!rest in labora studies will decline. What educational researcher - indeed, what
psychoit gist - does not prefer to collect his data in the classroom? Why not

use ecologically relevant data if they are available?

4. The sheer amount of empirical material reported in each Journal article is likely to
inert-we. In the long run, the standards of Journal reviewers and editors will be
affected.

S. The type of :tudies performed are likely to change. On the one hand, data collection
in the classroom fa:nrs descriptive studies, because many aspects of classroom activity
cannot be var!ed s3:Ammatleally for the sake of an investigation.

On die other bane, intelligent tutorral; systems can be programmed to teach with
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different teaching strategies, and they are guaranteed to execute a particular teaching
strategy faithfully. This enables well-controlled experimental evaluations of teaching
strategies, as well as experimental tests of theoretically derived predications about the
effects of different teaching strategies on the behavior of the learner. Perhaps
"teaching strategy" will become the major independent variable in future psychologY
experiments.

8. If most psychological observations are collected in the classroom, the only way for a
theory to be impressive Is to handle those observations. Classroom behavior, rather
than laboratory behavior, will become the main testing ground for theories of
cognition. (See Anderson, Boyle, Corbett, & Lewis, 1986, for a similar opinion.).

At the present time, these effects of computerized teaching devices on cognitive research are Just

beginning to be noticeable."

In summary, the interactions between the simulation technique and educational research

and practice are complex. The simulation technique forces researchers to consider the content of

their subjects' knowledge and provides a format for theorizing about individual subjects. Both of

these features contribute to the pedagogical relevance of cognitive psychology. We can expect a

traditional science-to-practice knowledge transfer to occur to the extent that simulation models

contribute to the improvement of psychological theories with pedagogical relevance. But

simulation know-how also facilitates the construction of computerized teaching devices. Like all

other tools, these devices will shape the activities in which they are being used through their

functionality, rather than through their scientific rationale. Pina ily, these devices constitute a

channel through which the behavior of students In real learning situations become available to

researchers, with dramatic effects on how cognitive research is carried out.

lel
nterestingly, O'Dell & Dickerson, (19114), mak* a similar argument for the usefulness of systems for computerised

psychotherapy such u the ELIZA program.
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